top of page
22) Unveiling novel Neocosmospora species from Thai mangroves as potent biocontrol agents against Colletotrichum species.
A. Klomchit, M. S. Calabon, S. Worabandit, J. A. Weaver, E. M. Karima, F. Alberti, C. Greco* and S. Brooks*, J. Appl. Microbiol., 2024. In press.
21) Unveiling the potential of Daldinia eschscholtzii MFLUCC 19-0629 through bioactivity and bioinformatics studies for enhanced sustainable agriculture production
S. Brooks*, J. A. Weaver, A. Klomchit, S. A. Alharthi, T. Onlamun, R. Nurani, T. K. Vong, F. Alberti, C. Greco*, Front. Chem. Biol., 2024, 3, 1362147
20) Outreach: Impact on Skills and Future Careers of Postgraduate Practitioners Working with the Bristol ChemLabS Centre for Excellence in Teaching and Learning
T. G. Harrison, D. E. Shallcross* et al., J. Chem. Educ., 2023, 100, 11, 4270–4278
19) Chemical diversity, biological activities and biosynthesis of fungal naphthoquinones and their derivatives: A comprehensive update
M. A. Tammam, M. Sebak, C. Greco, A. Kijjoa and A. El-Demerdash*, J. Mol. Struct., 2022,1268,133711
18) Chemical diversity, medicinal potentialities, biosynthesis, and pharmacokinetics of anthraquinones and their congeners derived from marine fungi: a comprehensive update
M. Sebak, F. Molham, C. Greco, M. A. Tammam, M. Sobeh and A. El-Demerdash*, RSC Adv., 2022, 12, 24887-24921
17) Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi
T. Hyung Won, Jin W. Bok, N. Nadig, N. Venkatesh, G. Nickles, C. Greco, F. Y. Lim, J. B. González, B. G. Turgeon, N. P. Keller* and F. C. Schroeder*, Nat. Comm., 2022, 13, 4828
16) Bacterial hitchhikers derive benefits from fungal housing
N. Venkatesh, C. Greco, M. T. Drott, M. J. Koss, N. M. Keller and N. P. Keller*, Curr. Biol., 2022, 32, 1-11
15) Secreted secondary metabolites reduce bacterial wilt severity of tomato in bacterial-fungal co-infections
N. Venkatesh, M. J. Koss, C. Greco, G. Nickles, P. Wiemann and N. P. Keller*, Microorganism, 2021, 9, 2121
14) The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in Aspergillus nidulans
J. M. Palmer, P. Wiemann, C. Greco, Y. M. Chiang, C. C. C. Wang, D. L. Lindner and N. P. Keller*, J. Ind. Microbiol. Biotechnol., 2021, 48, kuab055
13) Transcription factor repurposing offers insights into evolution of biosynthetic gene cluster regulation
W. Wang, M. Drott, C. Greco, D. Luciano-Rosario, P. Wang* and N. P. Keller*, mBio, 2021, 12, e01399-21
12) Core steps to the azaphilone family of fungal natural products
K. Williams*, C. Greco, A. M. Bailey and C. L. Willis, ChemBioChem, 2021, 22, 3027-3036
11) Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi
M. T. Drott*, T. A. Rush, T. R. Satterlee, R. J. Giannone, P. E. Abraham, C. Greco, N. Venkatesh, J. M. Skerker, N. L. Glass, J.
L. Labbé, M. G. Milgroom, and N. P. Keller*, PNAS, 2021, 118, e2021683118
10) Fungal oxylipins direct programmed developmental switches in filamentous fungi
M. Niu, B. N. steffan, G. J. Fischer, N. Venkatesh, N. L. Raffa, M. A. Wettstein, J. W. Bok, C. Greco, C. Zhao, E. Berthier, E. Oliw, D. Beebe, M. Bromley and N. P. Keller*, Nat. Comm., 2020, 11, 5158
9) Uncovering biosynthetic relationships between antifungal nonadrides and octadrides
K. M. J. de Mattos-Shipley*^, C. E. Spencer^, C. Greco, D. M. Heard, D. E. O’Flyn, T. T. Dao, Z. Song, N. P. Mulholland, J. L.
Vincent, T. J. Simpson, R. J. Cox, A. M. Bailey* and C. L. Willis*, Chem. Sci., 2020, 11, 11570-11578
8) Chemical warfare between fungus-growing ants and their pathogens
S. Batey, C. Greco, M. I. Hutchings* and B. Wilkinson*, Curr. Opin.Chem. Biol., 2020, 59, 172-181
7) Diversity of secondary metabolism in Aspergillus nidulans clinical isolates
M. Drott*^, R. W. Bastos, G. H. Goldman, A. Rokas, L. N. A. Ries, T. Gabaldón, G. H. Goldman, P. Keller* and C. Greco* ^
mSphere, 2020, 5, e00156-20
6) The tetrameric pheromone module SteC-MkkB-MpkB-SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus
D. Frawley, C. Greco, B. Oakley, M. M. Alhussain, A. B. Fleming, N. P. Keller and Ö. Bayram*, Cell. Microbiol., 2020, 22, e13192
5) Depsipeptide Aspergillicins Revealed by Chromatin Reader Protein Deletion
C. Greco, B. T. Pfannenstiel, J. C. Liu and N. P. Keller*, ACS Chem. Biol., 2019, 14, 6, 1121-1128
4) Unearthing fungal chemodiversity and prospects for drug discovery
C. Greco, N. P. Keller* and A. Rokas*, Curr. Opin. Microbiol., 2019, 51 22-29
3) Structure Revision of Cryptosporioptides and Determination of the Genetic Basis for Dimeric Xanthone Biosynthesis in Fungi
C. Greco, K. M. J. de Mattos-Shipley, D. M. Heard, G. Hough, N. P. Mulholland, J. L. Vincent, J. Micklefield, A. M. Bailey, C.
L. Willis, R. J. Cox* and T. J. Simpson*, Chem. Sci., 2019, 10, 2930-2939
2) The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus
B. T. Pfannenstiel, C. Greco, A. T. Sukowaty and N. P. Keller*, Fungal. Genet. and Biol., 2018, 120, 9-12
1) The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
K. M. J. de Mattos-Shipley, C. Greco, D. M. Heard, G. Hough, N. P. Mulholland, J. L. Vincent, J. Micklefield, T. J. Simpson,
C. L. Willis, R. J. Cox and A. M. Bailey, Chem. Sci., 2018, 9, 4109-4117
(^authors contributed equally, *co-corresponding authors, click underlined text for the link to the publisher's website)
bottom of page